具有十年德晋贵宾厅销售经验,专业销售德晋贵宾厅现货
德晋贵宾厅公司销售热线:894333
产品展示
联系方式
销售经理:德晋贵宾厅
销售电话:894333
公司传真:894333
公司地址:吉林省白山市东开发区辽河路东首A11号22楼
行情关注
您的位置:主页 > 行情资讯 > 行情关注 >

德晋贵宾厅飞机发动机疲劳及抗疲劳方法

  疲劳被称为机械构件的致命杀手,据统计,机械零部件的破坏很大比例是由疲劳引起的(根据不同的数据来源及统计方法,常见的比例在40%~90%)。发生在1842年的凡尔赛铁路事故、世界第一个大型喷气客机“彗星”号的空中解体、美国F-15战斗机的空中解体、震惊世界的德国高铁事故等知名灾难均源于金属的疲劳。

  疲劳也是航空发动机部件失效的主要原因之一,根据CowlesB等人对普惠公司军用发动机典型零部件失效模式的统计,在所有失效模式中,和疲劳相关的失效占到49%。民机和军机的失效模式比例或有不同,不同阶段比例也有变化,但足以说明疲劳在航空发动机零部件失效中所占比重。

  疲劳是指材料、零件和构件在循环载荷作用下,在某个点或某些点逐渐产生局部的、永久性的性能变化,在一定循环次数后形成裂纹,并在载荷作用下继续扩展直到完全断裂的现象。最简单的例子就是拉不断的铁丝不断弯折就断了。

  疲劳破坏具有以下的特点:突然性。断裂时并无明显的宏观塑性变形,断裂前没有明显的预兆,而是突然地破坏;低应力。疲劳破坏在循环应力的最大值,远低于材料的抗拉强度或屈服强度的情况下就可以发生;重复载荷。疲劳破坏是多次重复载荷作用下产生的破坏,它是较长期的交变应力作用的结果,疲劳破坏往往要经历一定时间,与静载下的一次破坏不同;缺陷敏感。疲劳对缺陷(如缺口、裂纹及组织缺陷)十分敏感,由于疲劳破坏是从局部开始的,所以它对缺陷具有高度的选择性;疲劳断口。疲劳破坏能清楚地显示出裂纹的发生、扩展和最后断裂三个组成部分。

  影响疲劳强度的因素比较多,以下几类因素在航空发动机设计、制造中需要重点予以考虑。应力集中,疲劳源总是出现在应力集中的地方,必须注意构件的细节设计以避免严重的应力集中,比如加大剖面突变处的圆角半径;表面状态,疲劳裂纹常常从表面开始,所以表面状态对疲劳强度会有显著的影响,表面加工越粗糙,疲劳强度降低、越严重;温度,一般随着温度的升高,疲劳强度会降低。

  疲劳是循环载荷下的破坏问题,只要航空发动机某构件承受的载荷是循环变化的,就可能发生疲劳破坏。航空发动机中最常见的两类循环载荷,一是由各种气动、机械原因诱发的振动循环载荷,再就是飞机起落循环造成的循环载荷。

  振动引起的高周疲劳。航空发动机的叶片等零部件承受着由各种气动、机械原因诱发的振动应力,此类振动应力幅值相对较低,一般使零部件发生105以上循环的高周疲劳失效。需要指出的是,此处的循环指的是一次振动循环而非发动机起落循环,虽然振动应力一般比较小,但是频率很高。因此,仍然可以在短时间内造成严重的破坏。

  高周疲劳破坏从20世纪80年代中期显现,到90年代中期已经成为美国战斗机动力的主要失效模式。1994年朝鲜半岛局势紧张之时,美国空军主力战机F-15和F-16因为高周疲劳故障分别被限制使用和停飞,以至于美国于1994年启动涡轮发动机高周疲劳科学与技术计划,旨在解决航空涡轮发动机的主要故障--高周疲劳问题。

  发动机起落循环造成的低周疲劳。在飞机的一次起飞-降落的工作循环中,航空发动机的构件(如涡轮盘等)承受一次离心载荷、温度载荷、气动载荷作用的循环,这种起落循环往往使得构件在105次循环以内发生低周疲劳破坏。

  对温度影响可以忽略的零部件,起落循环引起的疲劳问题相对简单。但在涡轮等热端部件中的情形却非常复杂,因为除了应力应变循环引起的疲劳损伤外,也存在高温引起的蠕变损伤,而且温度也循环变化。

  航空发动机中温度影响不明显的零部件,起落循环造成的疲劳可看成是等温纯疲劳问题,对涡轮叶片、盘等热端部件,温度效应不可忽略,其损伤形式应该是热+机械+蠕变的疲劳损伤形式。但是由于热机疲劳试验需要昂贵的设备,并且要耗费大量的时间,所以通常情况下采用最高工作温度下的等温疲劳或蠕变疲劳的试验数据,来预测和评估热机耦合下的疲劳行为及寿命。

  然而,研究发现在高温等温疲劳和热机耦合疲劳条件下,循环的应力-应变响应、裂纹的萌生及扩展并不一致,相同应变幅下,热机疲劳寿命要远低等温疲劳寿命。所以采用高温等温疲劳试验数据来预测热机疲劳的寿命,并不像预想的那样偏于保守,很多情况下是非保守的。

  另外需要指出的是,航空发动机中的疲劳破坏基本都是多模式下的复合失效问题。比如,叶片在承受起落循环造成的疲劳损伤的同时,也承受着振动引起的疲劳损伤,其失效往往是高周低周复合失效,复合疲劳寿命将比单独的低周疲劳、高周疲劳寿命降低很多。

  零部件从投入使用到最后疲劳断裂的寿命,由裂纹萌生寿命和裂纹扩展寿命两部分组成。工程上定义的裂纹萌生寿命是指产生一个工程可检裂纹所经历的循环数,从萌生到扩展至断裂的寿命即为裂纹扩展寿命。一般情况下,疲劳寿命预测主要指估算结构的裂纹萌生寿命,裂纹扩展寿命一般通过基于断裂力学理论的裂纹扩展模拟进行估算。疲劳寿命预测方法很多,从基本原理来讲,可分为名义应力法、局部应力应变法、能量法、场强法等,航空发动机中用的比较多的主要是名义应力法和局部应力应变法。

  了解疲劳相关的内容,最终目的是要预防或者减少航空发动机发生疲劳失效的情况,进行航空发动机的长寿命设计。如下这些措施常用于提高结构的疲劳强度:

  结构优化设计。结构设计中尽量避免产生应力集中,对过渡圆角、螺栓孔等容易产生应力集中的部位进行优化,疲劳往往出现在这些应力集中部位;严格控制温度。疲劳强度一般随着温度的升高急剧下降,不能为了性能达标而一味地提高温度;采用强化措施。采用各种表面强化处理、孔挤压强化等;提高零件加工质量。裂纹往往出现在材料缺陷或者加工缺陷位置,必须加强零部件加工制造工艺,严格控制关键位置的加工精度和加工质量,减少疲劳源,防止超差等质量问题引起的疲劳失效。

Copyright © 2011-2018 德晋贵宾厅 版权所有 / 京ICP备11027359号网站地图
销售电话:894333 公司传真:894333 地址:吉林省白山市东开发区辽河路东首A11号22楼
十年专业德晋贵宾厅公司 http://www.laixinsheji.com 德晋贵宾厅 澳门德晋厅开户